A6/main.cpp

294 lines
11 KiB
C++
Raw Normal View History

2024-12-04 16:44:31 -07:00
/**
2024-12-04 18:11:31 -07:00
Assignment 6 - Maze Runner, a program to parse a .maze text file and display it using SFML,
and then solve it using either a breadth- or depth- first search algorithm. I also implemented
both extra-credit pieces, displaying the final path and also showing added but not-yet searched
nodes.
2024-12-04 16:44:31 -07:00
@author Tyler Beckman (tyler_beckman@myriation.xyz)
@date 12/4/24
*/
#include <SFML/Graphics.hpp>
#include <SFML/Window/Keyboard.hpp>
#include <queue>
#include <stack>
#include <utility>
#include <variant>
using namespace sf;
#include <iostream>
#include <fstream>
using namespace std;
enum class State {
Unexplored,
Added,
Explored,
UsedInPath
};
struct Node {
char character;
State state;
Node* prevNode;
};
int main(int argc, char** argv) {
string filename;
if (argc >= 2) {
filename = argv[1];
} else {
cout << "Please enter a maze filename to load: ";
cin >> filename;
}
cout << "Loading maze file " << filename << endl;
ifstream mazeFile(filename);
if (mazeFile.fail()) {
std::cout << "Failed to open specified file path " << filename
<< ", does it exist?" << std::endl;
return 1;
}
int rows, cols;
mazeFile >> rows >> cols;
mazeFile.get(); // move cursor past newline to actual grid characters
Node** grid = new Node*[rows];
pair<int, int> startNode(-1, -1);
for (int row = 0; row < rows; row++) {
grid[row] = new Node[cols];
for (int col = 0; col < cols; col++) {
grid[row][col].character = mazeFile.get();
grid[row][col].state = State::Unexplored;
grid[row][col].prevNode = nullptr;
// Save start as starting node and mark as visited
if (grid[row][col].character == 'S') {
startNode = make_pair(row, col);
grid[row][col].state = State::Explored;
};
}
mazeFile.get(); // advance past newline
}
char searchType = '\0';
cout << "Would you like to use a [b]readth-first search or a [d]epth-first search? ";
cin >> searchType;
if (searchType != 'b' && searchType != 'B' && searchType != 'd' && searchType != 'D') {
cout << "Search type '" << searchType << "' is unrecognized. Please enter a valid search type." << endl;
return 1;
}
variant<queue<pair<int, int>>, stack<pair<int, int>>> nodeList;
// Create stack or queue with start node
if (searchType == 'b' || searchType == 'B') {
nodeList = queue<pair<int, int>>({startNode});
} else {
nodeList = stack<pair<int, int>>({startNode});
}
bool searching = true;
// create a window
RenderWindow window( VideoMode(15*cols, 15*rows), "Maze Runner" );
window.setVerticalSyncEnabled(true);
// create an event object once to store future events
Event event;
// while the window is open
while( window.isOpen() ) {
// clear any existing contents
window.clear();
/////////////////////////////////////
// BEGIN DRAWING HERE
// Draw unsolved maze from grid by iterating over each column in each row
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
sf::RectangleShape rectangle;
rectangle.setSize(Vector2f(15, 15));
rectangle.setPosition(col * 15, row * 15);
switch (grid[row][col].character) {
case 'S':
rectangle.setFillColor(Color::Green);
break;
case 'E':
rectangle.setFillColor(Color::Red);
break;
case '#':
rectangle.setFillColor(Color::Black);
break;
case '.':
rectangle.setFillColor(Color::White);
break;
}
if (grid[row][col].character != 'S' && grid[row][col].character != 'E') {
switch (grid[row][col].state) {
case State::Added:
rectangle.setFillColor(Color::Blue);
break;
case State::Explored:
rectangle.setFillColor(Color::Magenta);
break;
case State::UsedInPath:
rectangle.setFillColor(Color::Yellow);
break;
default:
break;
}
}
window.draw(rectangle);
}
}
// Solve maze
if (searching) {
// Take a node off the stack or queue
pair<int, int> dequeuedNode;
if (searchType == 'B' || searchType == 'b') {
queue<pair<int, int>>& nodeQueue = get<queue<pair<int, int>>>(nodeList);
if (nodeQueue.size() == 0) {
// Handle unsolvable mazes
searching = false;
cout << "Maze is unsolvable :c" << endl;
continue;
}
dequeuedNode = nodeQueue.front();
nodeQueue.pop();
} else {
stack<pair<int, int>>& nodeStack = get<stack<pair<int, int>>>(nodeList);
if (nodeStack.size() == 0) {
// Handle unsolvable mazes
searching = false;
cout << "Maze is unsolvable :c" << endl;
continue;
}
dequeuedNode = nodeStack.top();
nodeStack.pop();
}
grid[dequeuedNode.first][dequeuedNode.second].state = State::Explored;
// If end, print end and empty structure, then calculate true path
if (grid[dequeuedNode.first][dequeuedNode.second].character == 'E') {
cout << "End reached!" << endl;
searching = false;
// Empty stack/queue
if (searchType == 'B' || searchType == 'b') {
queue<pair<int, int>>& nodeQueue = get<queue<pair<int, int>>>(nodeList);
for (size_t i = 0; i < nodeQueue.size(); i++) {
nodeQueue.pop();
}
} else {
stack<pair<int, int>>& nodeStack = get<stack<pair<int, int>>>(nodeList);
for (size_t i = 0; i < nodeStack.size(); i++) {
nodeStack.pop();
}
}
// Mark all path-nodes as State::UsedInPath
for (Node* node = &grid[dequeuedNode.first][dequeuedNode.second]; node != nullptr; node = node->prevNode) {
node->state = State::UsedInPath;
}
} else {
// Take dequeued node and process it
pair<int, int> nodesToAdd[4];
int nodesAdded = 0;
// Add all adjacent nodes in South->East->North->West order, if not added already
// South
if (
dequeuedNode.first != (rows - 1)
&& grid[dequeuedNode.first + 1][dequeuedNode.second].state == State::Unexplored
&& grid[dequeuedNode.first + 1][dequeuedNode.second].character != '#'
) {
nodesToAdd[nodesAdded] = make_pair(dequeuedNode.first + 1, dequeuedNode.second);
nodesAdded++;
}
// East
if (
dequeuedNode.second != (cols - 1)
&& grid[dequeuedNode.first][dequeuedNode.second + 1].state == State::Unexplored
&& grid[dequeuedNode.first][dequeuedNode.second + 1].character != '#'
) {
nodesToAdd[nodesAdded] = make_pair(dequeuedNode.first, dequeuedNode.second + 1);
nodesAdded++;
}
// North
if (
dequeuedNode.first != 0
&& grid[dequeuedNode.first - 1][dequeuedNode.second].state == State::Unexplored
&& grid[dequeuedNode.first - 1][dequeuedNode.second].character != '#'
) {
nodesToAdd[nodesAdded] = make_pair(dequeuedNode.first - 1, dequeuedNode.second);
nodesAdded++;
}
// West
if (
dequeuedNode.second != 0
&&grid[dequeuedNode.first][dequeuedNode.second - 1].state == State::Unexplored
&& grid[dequeuedNode.first][dequeuedNode.second - 1].character != '#'
) {
nodesToAdd[nodesAdded] = make_pair(dequeuedNode.first, dequeuedNode.second - 1);
nodesAdded++;
}
// Mark all added notes as State::Added, and link to current node to later display path
for (int i = 0; i < nodesAdded; i++) {
grid[nodesToAdd[i].first][nodesToAdd[i].second].state = State::Added;
grid[nodesToAdd[i].first][nodesToAdd[i].second].prevNode = &grid[dequeuedNode.first][dequeuedNode.second];
if (searchType == 'B' || searchType == 'b') {
queue<pair<int, int>>& nodeQueue = get<queue<pair<int, int>>>(nodeList);
nodeQueue.push(nodesToAdd[i]);
} else {
stack<pair<int, int>>& nodeStack = get<stack<pair<int, int>>>(nodeList);
nodeStack.push(nodesToAdd[i]);
}
}
// Sleep to avoid solving instantly
sleep(milliseconds(50));
}
}
// END DRAWING HERE
/////////////////////////////////////
// display the current contents of the window
window.display();
/////////////////////////////////////
// BEGIN EVENT HANDLING HERE
// check if any events happened since the last time checked
while( window.pollEvent(event) ) {
// if event type corresponds to pressing window X
if (event.type == Event::Closed) {
// tell the window to close
window.close();
}
// If event type corresponds to pressing Q or Esc
if (event.type == Event::KeyPressed) {
switch (event.key.code) {
case Keyboard::Key::Q:
case Keyboard::Key::Escape:
// Tell the window to close
window.close();
break;
default:
break;
}
}
// check addition event types to handle additional events
}
// END EVENT HANDLING HERE
/////////////////////////////////////
}
return 0;
}