L1A/main.cpp

182 lines
5.5 KiB
C++
Raw Normal View History

2024-08-25 19:11:50 -06:00
/* CSCI 200: Lab XX (_INSERT_LAB_HERE_): XXXX (_GIVE_BRIEF_DESCRIPTION_HERE_)
*
* Author: XXXX (_INSERT_YOUR_NAME_HERE_)
*
* More complete description here...
*/
#include <iostream>
#include <cmath>
double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24;
double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8;
double const SPHERE_VOLUME = 4.0 / 3;
double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8;
double ideal_gas_law(double moles, double gas_absolute_temperature,
2024-08-25 20:44:35 -06:00
double volume) {
return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume;
2024-08-25 19:11:50 -06:00
}
double average_acceleration(double pos_start, double pos_end, double time_start,
2024-08-25 20:44:35 -06:00
double time_end) {
return (pos_end - pos_start) / std::pow(time_end - time_start, 2);
2024-08-25 19:11:50 -06:00
}
double ohms_law(double voltage, double resistance) {
2024-08-25 20:44:35 -06:00
return voltage / resistance;
2024-08-25 19:11:50 -06:00
}
double universal_gravitation(double mass_one, double mass_two,
2024-08-25 20:44:35 -06:00
double distance) {
return GRAVITATIONAL_CONSTANT *
((mass_one * mass_two) / std::pow(distance, 2));
2024-08-25 19:11:50 -06:00
}
double pythagorean_theorem(double x, double y) {
2024-08-25 20:44:35 -06:00
return std::sqrt(std::pow(x, 2) + std::pow(y, 2));
2024-08-25 19:11:50 -06:00
}
double sphere_volume(double radius) {
2024-08-25 20:44:35 -06:00
return SPHERE_VOLUME * M_PI * std::pow(radius, 3);
2024-08-25 19:11:50 -06:00
}
double deflection(double weight, double length, double elasticity_modulus,
2024-08-25 20:44:35 -06:00
double moment_of_inertia) {
return (weight * std::pow(length, 3)) /
(3 * elasticity_modulus * moment_of_inertia);
2024-08-25 19:11:50 -06:00
}
double heat_transfer_rate(double transfer_coefficient, double surface_area,
2024-08-25 20:44:35 -06:00
double temperature_change) {
return transfer_coefficient * surface_area * temperature_change;
2024-08-25 19:11:50 -06:00
}
double stress(double force, double area) { return force / area; }
double shear_stress(double sigma_x, double sigma_y, double tau_xy,
2024-08-25 20:44:35 -06:00
double theta) {
return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) +
tau_xy * cos(2 * theta);
2024-08-25 19:11:50 -06:00
}
double coulombs_law(double charge_1, double charge_2,
2024-08-25 20:44:35 -06:00
double relative_static_permittivity, double distance) {
return std::fabs(charge_1 * charge_2) /
(4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity *
std::pow(distance, 2));
2024-08-25 19:11:50 -06:00
}
double input_double(std::string prompt) {
2024-08-25 20:44:35 -06:00
double out;
while (true) {
std::cout << prompt + ": ";
std::cin >> out;
if (std::cin.fail()) {
std::cin.clear();
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::cout << "Invalid number, Please try again" << std::endl;
} else {
break;
}
}
return out;
2024-08-25 19:11:50 -06:00
}
int main() {
2024-08-25 20:44:35 -06:00
while (true) {
std::cout << "[0] Quit program" << std::endl
<< "[1] Ideal gas law" << std::endl
<< "[2] Average acceleration" << std::endl
<< "[3] Ohm's law" << std::endl
<< "[4] Universal gravitation" << std::endl
<< "[5] Pythagorean theorem" << std::endl
<< "[6] Sphere volume" << std::endl
<< "[7] Deflection" << std::endl
<< "[8] Heat transfer rate" << std::endl
<< "[9] Stress" << std::endl
<< "[10] Shear Stress" << std::endl
<< "[11] Coulomb's law" << std::endl;
int equation =
input_double("Which equation would you like to calculate?");
double output;
switch (equation) {
case 0:
return 0;
case 1:
output = ideal_gas_law(
input_double("Please enter amount of moles"),
input_double("Please enter the gas absolute temperate"),
input_double("Please enter the volume"));
break;
case 2:
output = average_acceleration(
input_double("Please enter the starting position"),
input_double("Please enter the ending position"),
input_double("Please enter the starting time"),
input_double("Please enter the ending time"));
break;
case 3:
output = ohms_law(input_double("Please input the voltage"),
input_double("Please input the resistance"));
break;
case 4:
output = universal_gravitation(
input_double("Please input the mass of object 1"),
input_double("Please input the mass of object 2"),
input_double("Please input the distance between objects"));
break;
case 5:
output = pythagorean_theorem(
input_double("Please input the x distance"),
input_double("Please input the y distance"));
break;
case 6:
output = sphere_volume(
input_double("Please input the sphere radius"));
break;
case 7:
output = deflection(
input_double("Please input the force of weight"),
input_double("Please input the length"),
input_double("Please input the elasticity modulus"),
input_double("Please input the moment of inertia"));
break;
case 8:
output = heat_transfer_rate(
input_double("Please input the transfer coefficient"),
input_double("Please input the surface area"),
input_double("Please input the change in temperature"));
break;
case 9:
output =
stress(input_double("Please input the amount of force"),
input_double("Please input the surface area"));
break;
case 10:
output = shear_stress(input_double("Please enter σ_x"),
input_double("Please enter σ_y"),
input_double("Please enter τ_xy"),
input_double("Please enter θ (in radians)"));
break;
case 11:
output = coulombs_law(
input_double("Please input the first charge"),
input_double("Please input the second charge"),
input_double(
"Please input the relative static permittivity"),
input_double("Please input the distance between charges"));
break;
default:
std::cout << "That is not a valid choice. Please try again."
<< std::endl;
continue;
}
std::cout << "The result of that calculation is: " << output
<< std::endl;
}
2024-08-25 19:11:50 -06:00
}