diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..de6c409 --- /dev/null +++ b/Makefile @@ -0,0 +1,24 @@ +TARGET = L1A +SRC_FILES = main.cpp + +# NO EDITS BELOW THIS LINE +CXX = g++ +OBJECTS = $(SRC_FILES:.cpp=.o) + +ifeq ($(shell echo "Windows"), "Windows") + TARGET := $(TARGET).exe + DEL = del +else + DEL = rm -f +endif + +all: $(TARGET) + +$(TARGET): $(OBJECTS) + $(CXX) -std=c++17 -o $@ $^ + +%.o: %.cpp + $(CXX) -std=c++17 -o $@ -c $< + +clean: + $(DEL) $(TARGET) $(OBJECTS) \ No newline at end of file diff --git a/main.cpp b/main.cpp index 98082ab..f0fff37 100644 --- a/main.cpp +++ b/main.cpp @@ -1,8 +1,13 @@ -/* CSCI 200: Lab XX (_INSERT_LAB_HERE_): XXXX (_GIVE_BRIEF_DESCRIPTION_HERE_) +/* CSCI 200: Lab 1A (Math Equation Solver): Tyler Beckman * - * Author: XXXX (_INSERT_YOUR_NAME_HERE_) + * Author: Tyler Beckman * - * More complete description here... + * A C++ program to interactively solve 10 different mathmatical equations, + * using the appropriate constants where relevant. I decided to implement all 10 + * rather than just 2 because it sounded interesting and I wanted to challenge + * myself. It also will keep prompting for the equation to solve until you + * explicitly respond with a 0 or CTRL+C it, rather than just exit once the + * equation is calculated. */ #include @@ -10,173 +15,176 @@ double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24; double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8; -double const SPHERE_VOLUME = 4.0 / 3; +double const SPHERE_VOLUME_RATIO = 4.0 / 3; double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8; double ideal_gas_law(double moles, double gas_absolute_temperature, - double volume) { - return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume; + double volume) { + return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume; } double average_acceleration(double pos_start, double pos_end, double time_start, - double time_end) { - return (pos_end - pos_start) / std::pow(time_end - time_start, 2); + double time_end) { + return (pos_end - pos_start) / std::pow(time_end - time_start, 2); } double ohms_law(double voltage, double resistance) { - return voltage / resistance; + return voltage / resistance; } double universal_gravitation(double mass_one, double mass_two, - double distance) { - return GRAVITATIONAL_CONSTANT * - ((mass_one * mass_two) / std::pow(distance, 2)); + double distance) { + return GRAVITATIONAL_CONSTANT * + ((mass_one * mass_two) / std::pow(distance, 2)); } double pythagorean_theorem(double x, double y) { - return std::sqrt(std::pow(x, 2) + std::pow(y, 2)); + return std::sqrt(std::pow(x, 2) + std::pow(y, 2)); } double sphere_volume(double radius) { - return SPHERE_VOLUME * M_PI * std::pow(radius, 3); + return SPHERE_VOLUME_RATIO * M_PI * std::pow(radius, 3); } double deflection(double weight, double length, double elasticity_modulus, - double moment_of_inertia) { - return (weight * std::pow(length, 3)) / - (3 * elasticity_modulus * moment_of_inertia); + double moment_of_inertia) { + return (weight * std::pow(length, 3)) / + (3 * elasticity_modulus * moment_of_inertia); } double heat_transfer_rate(double transfer_coefficient, double surface_area, - double temperature_change) { - return transfer_coefficient * surface_area * temperature_change; + double temperature_change) { + return transfer_coefficient * surface_area * temperature_change; } double stress(double force, double area) { return force / area; } double shear_stress(double sigma_x, double sigma_y, double tau_xy, - double theta) { - return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + - tau_xy * cos(2 * theta); + double theta) { + return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + tau_xy * cos(2 * theta); } double coulombs_law(double charge_1, double charge_2, - double relative_static_permittivity, double distance) { - return std::fabs(charge_1 * charge_2) / - (4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity * - std::pow(distance, 2)); + double relative_static_permittivity, double distance) { + return std::fabs(charge_1 * charge_2) / + (4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity * + std::pow(distance, 2)); } double input_double(std::string prompt) { - double out; - while (true) { - std::cout << prompt + ": "; - std::cin >> out; + double out; + while (true) { + std::cout << prompt + ": "; + std::cin >> out; - if (std::cin.fail()) { - std::cin.clear(); - std::cin.ignore(std::numeric_limits::max(), '\n'); - std::cout << "Invalid number, Please try again" << std::endl; - } else { - break; - } - } + if (std::cin.fail()) { + // The clear and ignore are necessary because otherwise it seems to keep + // reusing the first input a person enters + std::cin.clear(); + std::cin.ignore(std::numeric_limits::max(), '\n'); + std::cout << "Invalid number, please make sure your number is formatted " + "correctly." + << std::endl; + } else { + break; + } + } - return out; + return out; } int main() { - while (true) { - std::cout << "[0] Quit program" << std::endl - << "[1] Ideal gas law" << std::endl - << "[2] Average acceleration" << std::endl - << "[3] Ohm's law" << std::endl - << "[4] Universal gravitation" << std::endl - << "[5] Pythagorean theorem" << std::endl - << "[6] Sphere volume" << std::endl - << "[7] Deflection" << std::endl - << "[8] Heat transfer rate" << std::endl - << "[9] Stress" << std::endl - << "[10] Shear Stress" << std::endl - << "[11] Coulomb's law" << std::endl; - int equation = - input_double("Which equation would you like to calculate?"); + while (true) { + std::cout << "[0] Quit program" << std::endl + << "[1] Ideal gas law" << std::endl + << "[2] Average acceleration" << std::endl + << "[3] Ohm's law" << std::endl + << "[4] Universal gravitation" << std::endl + << "[5] Pythagorean theorem" << std::endl + << "[6] Sphere volume" << std::endl + << "[7] Deflection" << std::endl + << "[8] Heat transfer rate" << std::endl + << "[9] Stress" << std::endl + << "[10] Shear Stress" << std::endl + << "[11] Coulomb's law" << std::endl; + int equation_choice = + input_double("Which equation would you like to calculate?"); - double output; + double calculated_value; - switch (equation) { - case 0: - return 0; - case 1: - output = ideal_gas_law( - input_double("Please enter amount of moles"), - input_double("Please enter the gas absolute temperate"), - input_double("Please enter the volume")); - break; - case 2: - output = average_acceleration( - input_double("Please enter the starting position"), - input_double("Please enter the ending position"), - input_double("Please enter the starting time"), - input_double("Please enter the ending time")); - break; - case 3: - output = ohms_law(input_double("Please input the voltage"), - input_double("Please input the resistance")); - break; - case 4: - output = universal_gravitation( - input_double("Please input the mass of object 1"), - input_double("Please input the mass of object 2"), - input_double("Please input the distance between objects")); - break; - case 5: - output = pythagorean_theorem( - input_double("Please input the x distance"), - input_double("Please input the y distance")); - break; - case 6: - output = sphere_volume( - input_double("Please input the sphere radius")); - break; - case 7: - output = deflection( - input_double("Please input the force of weight"), - input_double("Please input the length"), - input_double("Please input the elasticity modulus"), - input_double("Please input the moment of inertia")); - break; - case 8: - output = heat_transfer_rate( - input_double("Please input the transfer coefficient"), - input_double("Please input the surface area"), - input_double("Please input the change in temperature")); - break; - case 9: - output = - stress(input_double("Please input the amount of force"), - input_double("Please input the surface area")); - break; - case 10: - output = shear_stress(input_double("Please enter σ_x"), - input_double("Please enter σ_y"), - input_double("Please enter τ_xy"), - input_double("Please enter θ (in radians)")); - break; - case 11: - output = coulombs_law( - input_double("Please input the first charge"), - input_double("Please input the second charge"), - input_double( - "Please input the relative static permittivity"), - input_double("Please input the distance between charges")); - break; - default: - std::cout << "That is not a valid choice. Please try again." - << std::endl; - continue; - } - std::cout << "The result of that calculation is: " << output - << std::endl; - } + switch (equation_choice) { + case 0: + return 0; + case 1: + calculated_value = ideal_gas_law( + input_double("Please enter amount of moles"), + input_double("Please enter the gas absolute temperate"), + input_double("Please enter the volume")); + break; + case 2: + calculated_value = average_acceleration( + input_double("Please enter the starting position"), + input_double("Please enter the ending position"), + input_double("Please enter the starting time"), + input_double("Please enter the ending time")); + break; + case 3: + calculated_value = + ohms_law(input_double("Please input the voltage"), + input_double("Please input the resistance")); + break; + case 4: + calculated_value = universal_gravitation( + input_double("Please input the mass of object 1"), + input_double("Please input the mass of object 2"), + input_double("Please input the distance between objects")); + break; + case 5: + calculated_value = + pythagorean_theorem(input_double("Please input the x distance"), + input_double("Please input the y distance")); + break; + case 6: + calculated_value = + sphere_volume(input_double("Please input the sphere radius")); + break; + case 7: + calculated_value = + deflection(input_double("Please input the force of weight"), + input_double("Please input the length"), + input_double("Please input the elasticity modulus"), + input_double("Please input the moment of inertia")); + break; + case 8: + calculated_value = heat_transfer_rate( + input_double("Please input the transfer coefficient"), + input_double("Please input the surface area"), + input_double("Please input the change in temperature")); + break; + case 9: + calculated_value = + stress(input_double("Please input the amount of force"), + input_double("Please input the surface area")); + break; + case 10: + calculated_value = shear_stress( + input_double("Please enter σ_x"), input_double("Please enter σ_y"), + input_double("Please enter τ_xy"), + input_double("Please enter θ (in radians)")); + break; + case 11: + calculated_value = coulombs_law( + input_double("Please input the first charge"), + input_double("Please input the second charge"), + input_double("Please input the relative static permittivity"), + input_double("Please input the distance between charges")); + break; + default: + std::cout << "That is not a valid equation choice. Please try again." + << std::endl; + continue; + } + std::cout << "The result of that calculation is: " << calculated_value + << std::endl; + } } \ No newline at end of file