This commit is contained in:
Tyler Beckman 2024-08-28 22:29:28 -06:00
parent 2470b9b1b8
commit e29d962b45
Signed by: Ty
GPG key ID: 2813440C772555A4
4 changed files with 97 additions and 78 deletions

View file

@ -1,5 +1,5 @@
TARGET = L1A TARGET = L1A
SRC_FILES = main.cpp SRC_FILES = main.cpp math.cpp
# NO EDITS BELOW THIS LINE # NO EDITS BELOW THIS LINE
CXX = g++ CXX = g++

View file

@ -9,67 +9,10 @@
* explicitly respond with a 0 or CTRL+C it, rather than just exit once the * explicitly respond with a 0 or CTRL+C it, rather than just exit once the
* equation is calculated. * equation is calculated.
*/ */
#include "math.h"
#include <iostream> #include <iostream>
#include <limits>
#include <cmath>
double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24;
double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8;
double const SPHERE_VOLUME_RATIO = 4.0 / 3;
double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8;
double ideal_gas_law(double moles, double gas_absolute_temperature,
double volume) {
return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume;
}
double average_acceleration(double pos_start, double pos_end, double time_start,
double time_end) {
return (pos_end - pos_start) / std::pow(time_end - time_start, 2);
}
double ohms_law(double voltage, double resistance) {
return voltage / resistance;
}
double universal_gravitation(double mass_one, double mass_two,
double distance) {
return GRAVITATIONAL_CONSTANT *
((mass_one * mass_two) / std::pow(distance, 2));
}
double pythagorean_theorem(double x, double y) {
return std::sqrt(std::pow(x, 2) + std::pow(y, 2));
}
double sphere_volume(double radius) {
return SPHERE_VOLUME_RATIO * M_PI * std::pow(radius, 3);
}
double deflection(double weight, double length, double elasticity_modulus,
double moment_of_inertia) {
return (weight * std::pow(length, 3)) /
(3 * elasticity_modulus * moment_of_inertia);
}
double heat_transfer_rate(double transfer_coefficient, double surface_area,
double temperature_change) {
return transfer_coefficient * surface_area * temperature_change;
}
double stress(double force, double area) { return force / area; }
double shear_stress(double sigma_x, double sigma_y, double tau_xy,
double theta) {
return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + tau_xy * cos(2 * theta);
}
double coulombs_law(double charge_1, double charge_2,
double relative_static_permittivity, double distance) {
return std::fabs(charge_1 * charge_2) /
(4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity *
std::pow(distance, 2));
}
double input_double(std::string prompt) { double input_double(std::string prompt) {
double out; double out;
@ -107,73 +50,72 @@ int main() {
<< "[9] Stress" << std::endl << "[9] Stress" << std::endl
<< "[10] Shear Stress" << std::endl << "[10] Shear Stress" << std::endl
<< "[11] Coulomb's law" << std::endl; << "[11] Coulomb's law" << std::endl;
int equation_choice = int equationChoice =
input_double("Which equation would you like to calculate?"); input_double("Which equation would you like to calculate?");
double calculated_value; double calculatedValue;
switch (equation_choice) { switch (equationChoice) {
case 0: case 0:
return 0; return 0;
case 1: case 1:
calculated_value = ideal_gas_law( calculatedValue = ideal_gas_law(
input_double("Please enter amount of moles"), input_double("Please enter amount of moles"),
input_double("Please enter the gas absolute temperate"), input_double("Please enter the gas absolute temperate"),
input_double("Please enter the volume")); input_double("Please enter the volume"));
break; break;
case 2: case 2:
calculated_value = average_acceleration( calculatedValue = average_acceleration(
input_double("Please enter the starting position"), input_double("Please enter the starting position"),
input_double("Please enter the ending position"), input_double("Please enter the ending position"),
input_double("Please enter the starting time"), input_double("Please enter the starting time"),
input_double("Please enter the ending time")); input_double("Please enter the ending time"));
break; break;
case 3: case 3:
calculated_value = calculatedValue = ohms_law(input_double("Please input the voltage"),
ohms_law(input_double("Please input the voltage"), input_double("Please input the resistance"));
input_double("Please input the resistance"));
break; break;
case 4: case 4:
calculated_value = universal_gravitation( calculatedValue = universal_gravitation(
input_double("Please input the mass of object 1"), input_double("Please input the mass of object 1"),
input_double("Please input the mass of object 2"), input_double("Please input the mass of object 2"),
input_double("Please input the distance between objects")); input_double("Please input the distance between objects"));
break; break;
case 5: case 5:
calculated_value = calculatedValue =
pythagorean_theorem(input_double("Please input the x distance"), pythagorean_theorem(input_double("Please input the x distance"),
input_double("Please input the y distance")); input_double("Please input the y distance"));
break; break;
case 6: case 6:
calculated_value = calculatedValue =
sphere_volume(input_double("Please input the sphere radius")); sphere_volume(input_double("Please input the sphere radius"));
break; break;
case 7: case 7:
calculated_value = calculatedValue =
deflection(input_double("Please input the force of weight"), deflection(input_double("Please input the force of weight"),
input_double("Please input the length"), input_double("Please input the length"),
input_double("Please input the elasticity modulus"), input_double("Please input the elasticity modulus"),
input_double("Please input the moment of inertia")); input_double("Please input the moment of inertia"));
break; break;
case 8: case 8:
calculated_value = heat_transfer_rate( calculatedValue = heat_transfer_rate(
input_double("Please input the transfer coefficient"), input_double("Please input the transfer coefficient"),
input_double("Please input the surface area"), input_double("Please input the surface area"),
input_double("Please input the change in temperature")); input_double("Please input the change in temperature"));
break; break;
case 9: case 9:
calculated_value = calculatedValue =
stress(input_double("Please input the amount of force"), stress(input_double("Please input the amount of force"),
input_double("Please input the surface area")); input_double("Please input the surface area"));
break; break;
case 10: case 10:
calculated_value = shear_stress( calculatedValue = shear_stress(
input_double("Please enter σ_x"), input_double("Please enter σ_y"), input_double("Please enter σ_x"), input_double("Please enter σ_y"),
input_double("Please enter τ_xy"), input_double("Please enter τ_xy"),
input_double("Please enter θ (in radians)")); input_double("Please enter θ (in radians)"));
break; break;
case 11: case 11:
calculated_value = coulombs_law( calculatedValue = coulombs_law(
input_double("Please input the first charge"), input_double("Please input the first charge"),
input_double("Please input the second charge"), input_double("Please input the second charge"),
input_double("Please input the relative static permittivity"), input_double("Please input the relative static permittivity"),
@ -184,7 +126,7 @@ int main() {
<< std::endl; << std::endl;
continue; continue;
} }
std::cout << "The result of that calculation is: " << calculated_value std::cout << "The result of that calculation is: " << calculatedValue
<< std::endl; << std::endl;
} }
} }

56
math.cpp Normal file
View file

@ -0,0 +1,56 @@
#include <cmath>
double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24;
double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8;
double const SPHERE_VOLUME_RATIO = 4.0 / 3;
double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8;
double ideal_gas_law(double moles, double gasAbsoluteTemperature,
double volume) {
return (moles * MOLAR_GAS_CONSTANT * gasAbsoluteTemperature) / volume;
}
double average_acceleration(double posStart, double posEnd, double timeStart,
double timeEnd) {
return (posEnd - posStart) / std::pow(timeEnd - timeStart, 2);
}
double ohms_law(double voltage, double resistance) {
return voltage / resistance;
}
double universal_gravitation(double massOne, double massTwo, double distance) {
return GRAVITATIONAL_CONSTANT * ((massOne * massTwo) / std::pow(distance, 2));
}
double pythagorean_theorem(double x, double y) {
return std::sqrt(std::pow(x, 2) + std::pow(y, 2));
}
double sphere_volume(double radius) {
return SPHERE_VOLUME_RATIO * M_PI * std::pow(radius, 3);
}
double deflection(double weight, double length, double elasticityModulus,
double momentOfInertia) {
return (weight * std::pow(length, 3)) /
(3 * elasticityModulus * momentOfInertia);
}
double heat_transfer_rate(double transferCoefficient, double surfaceArea,
double temperatureChange) {
return transferCoefficient * surfaceArea * temperatureChange;
}
double stress(double force, double area) { return force / area; }
double shear_stress(double sigmaX, double sigmaY, double tauXY, double theta) {
return -0.5 * (sigmaX - sigmaY) * sin(2 * theta) + tauXY * cos(2 * theta);
}
double coulombs_law(double charge1, double charge2,
double relativeStaticPermittivity, double distance) {
return std::fabs(charge1 * charge2) /
(4 * M_PI * VACUUM_PERMITTIVITY * relativeStaticPermittivity *
std::pow(distance, 2));
}

21
math.h Normal file
View file

@ -0,0 +1,21 @@
double ideal_gas_law(double, double, double);
double average_acceleration(double, double, double, double);
double ohms_law(double, double);
double universal_gravitation(double, double, double);
double pythagorean_theorem(double, double);
double sphere_volume(double);
double deflection(double, double, double, double);
double heat_transfer_rate(double, double, double);
double stress(double, double);
double shear_stress(double, double, double, double);
double coulombs_law(double, double, double, double);