190 lines
No EOL
6.9 KiB
C++
190 lines
No EOL
6.9 KiB
C++
/* CSCI 200: Lab 1A (Math Equation Solver): Tyler Beckman
|
||
*
|
||
* Author: Tyler Beckman
|
||
*
|
||
* A C++ program to interactively solve 10 different mathmatical equations,
|
||
* using the appropriate constants where relevant. I decided to implement all 10
|
||
* rather than just 2 because it sounded interesting and I wanted to challenge
|
||
* myself. It also will keep prompting for the equation to solve until you
|
||
* explicitly respond with a 0 or CTRL+C it, rather than just exit once the
|
||
* equation is calculated.
|
||
*/
|
||
#include <iostream>
|
||
|
||
#include <cmath>
|
||
|
||
double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24;
|
||
double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8;
|
||
double const SPHERE_VOLUME_RATIO = 4.0 / 3;
|
||
double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8;
|
||
|
||
double ideal_gas_law(double moles, double gas_absolute_temperature,
|
||
double volume) {
|
||
return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume;
|
||
}
|
||
|
||
double average_acceleration(double pos_start, double pos_end, double time_start,
|
||
double time_end) {
|
||
return (pos_end - pos_start) / std::pow(time_end - time_start, 2);
|
||
}
|
||
|
||
double ohms_law(double voltage, double resistance) {
|
||
return voltage / resistance;
|
||
}
|
||
|
||
double universal_gravitation(double mass_one, double mass_two,
|
||
double distance) {
|
||
return GRAVITATIONAL_CONSTANT *
|
||
((mass_one * mass_two) / std::pow(distance, 2));
|
||
}
|
||
|
||
double pythagorean_theorem(double x, double y) {
|
||
return std::sqrt(std::pow(x, 2) + std::pow(y, 2));
|
||
}
|
||
|
||
double sphere_volume(double radius) {
|
||
return SPHERE_VOLUME_RATIO * M_PI * std::pow(radius, 3);
|
||
}
|
||
|
||
double deflection(double weight, double length, double elasticity_modulus,
|
||
double moment_of_inertia) {
|
||
return (weight * std::pow(length, 3)) /
|
||
(3 * elasticity_modulus * moment_of_inertia);
|
||
}
|
||
|
||
double heat_transfer_rate(double transfer_coefficient, double surface_area,
|
||
double temperature_change) {
|
||
return transfer_coefficient * surface_area * temperature_change;
|
||
}
|
||
|
||
double stress(double force, double area) { return force / area; }
|
||
|
||
double shear_stress(double sigma_x, double sigma_y, double tau_xy,
|
||
double theta) {
|
||
return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + tau_xy * cos(2 * theta);
|
||
}
|
||
|
||
double coulombs_law(double charge_1, double charge_2,
|
||
double relative_static_permittivity, double distance) {
|
||
return std::fabs(charge_1 * charge_2) /
|
||
(4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity *
|
||
std::pow(distance, 2));
|
||
}
|
||
|
||
double input_double(std::string prompt) {
|
||
double out;
|
||
while (true) {
|
||
std::cout << prompt + ": ";
|
||
std::cin >> out;
|
||
|
||
if (std::cin.fail()) {
|
||
// The clear and ignore are necessary because otherwise it seems to keep
|
||
// reusing the first input a person enters
|
||
std::cin.clear();
|
||
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
|
||
std::cout << "Invalid number, please make sure your number is formatted "
|
||
"correctly."
|
||
<< std::endl;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
return out;
|
||
}
|
||
|
||
int main() {
|
||
while (true) {
|
||
std::cout << "[0] Quit program" << std::endl
|
||
<< "[1] Ideal gas law" << std::endl
|
||
<< "[2] Average acceleration" << std::endl
|
||
<< "[3] Ohm's law" << std::endl
|
||
<< "[4] Universal gravitation" << std::endl
|
||
<< "[5] Pythagorean theorem" << std::endl
|
||
<< "[6] Sphere volume" << std::endl
|
||
<< "[7] Deflection" << std::endl
|
||
<< "[8] Heat transfer rate" << std::endl
|
||
<< "[9] Stress" << std::endl
|
||
<< "[10] Shear Stress" << std::endl
|
||
<< "[11] Coulomb's law" << std::endl;
|
||
int equation_choice =
|
||
input_double("Which equation would you like to calculate?");
|
||
|
||
double calculated_value;
|
||
|
||
switch (equation_choice) {
|
||
case 0:
|
||
return 0;
|
||
case 1:
|
||
calculated_value = ideal_gas_law(
|
||
input_double("Please enter amount of moles"),
|
||
input_double("Please enter the gas absolute temperate"),
|
||
input_double("Please enter the volume"));
|
||
break;
|
||
case 2:
|
||
calculated_value = average_acceleration(
|
||
input_double("Please enter the starting position"),
|
||
input_double("Please enter the ending position"),
|
||
input_double("Please enter the starting time"),
|
||
input_double("Please enter the ending time"));
|
||
break;
|
||
case 3:
|
||
calculated_value =
|
||
ohms_law(input_double("Please input the voltage"),
|
||
input_double("Please input the resistance"));
|
||
break;
|
||
case 4:
|
||
calculated_value = universal_gravitation(
|
||
input_double("Please input the mass of object 1"),
|
||
input_double("Please input the mass of object 2"),
|
||
input_double("Please input the distance between objects"));
|
||
break;
|
||
case 5:
|
||
calculated_value =
|
||
pythagorean_theorem(input_double("Please input the x distance"),
|
||
input_double("Please input the y distance"));
|
||
break;
|
||
case 6:
|
||
calculated_value =
|
||
sphere_volume(input_double("Please input the sphere radius"));
|
||
break;
|
||
case 7:
|
||
calculated_value =
|
||
deflection(input_double("Please input the force of weight"),
|
||
input_double("Please input the length"),
|
||
input_double("Please input the elasticity modulus"),
|
||
input_double("Please input the moment of inertia"));
|
||
break;
|
||
case 8:
|
||
calculated_value = heat_transfer_rate(
|
||
input_double("Please input the transfer coefficient"),
|
||
input_double("Please input the surface area"),
|
||
input_double("Please input the change in temperature"));
|
||
break;
|
||
case 9:
|
||
calculated_value =
|
||
stress(input_double("Please input the amount of force"),
|
||
input_double("Please input the surface area"));
|
||
break;
|
||
case 10:
|
||
calculated_value = shear_stress(
|
||
input_double("Please enter σ_x"), input_double("Please enter σ_y"),
|
||
input_double("Please enter τ_xy"),
|
||
input_double("Please enter θ (in radians)"));
|
||
break;
|
||
case 11:
|
||
calculated_value = coulombs_law(
|
||
input_double("Please input the first charge"),
|
||
input_double("Please input the second charge"),
|
||
input_double("Please input the relative static permittivity"),
|
||
input_double("Please input the distance between charges"));
|
||
break;
|
||
default:
|
||
std::cout << "That is not a valid equation choice. Please try again."
|
||
<< std::endl;
|
||
continue;
|
||
}
|
||
std::cout << "The result of that calculation is: " << calculated_value
|
||
<< std::endl;
|
||
}
|
||
} |