package headscale import ( "fmt" "strings" "github.com/fatih/set" "inet.af/netaddr" "tailscale.com/tailcfg" "tailscale.com/util/dnsname" ) const ( ByteSize = 8 ) const ( ipv4AddressLength = 32 ipv6AddressLength = 128 ) // generateMagicDNSRootDomains generates a list of DNS entries to be included in `Routes` in `MapResponse`. // This list of reverse DNS entries instructs the OS on what subnets and domains the Tailscale embedded DNS // server (listening in 100.100.100.100 udp/53) should be used for. // // Tailscale.com includes in the list: // - the `BaseDomain` of the user // - the reverse DNS entry for IPv6 (0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa., see below more on IPv6) // - the reverse DNS entries for the IPv4 subnets covered by the user's `IPPrefix`. // In the public SaaS this is [64-127].100.in-addr.arpa. // // The main purpose of this function is then generating the list of IPv4 entries. For the 100.64.0.0/10, this // is clear, and could be hardcoded. But we are allowing any range as `IPPrefix`, so we need to find out the // subnets when we have 172.16.0.0/16 (i.e., [0-255].16.172.in-addr.arpa.), or any other subnet. // // How IN-ADDR.ARPA domains work is defined in RFC1035 (section 3.5). Tailscale.com seems to adhere to this, // and do not make use of RFC2317 ("Classless IN-ADDR.ARPA delegation") - hence generating the entries for the next // class block only. // From the netmask we can find out the wildcard bits (the bits that are not set in the netmask). // This allows us to then calculate the subnets included in the subsequent class block and generate the entries. func generateMagicDNSRootDomains(ipPrefixes []netaddr.IPPrefix) []dnsname.FQDN { fqdns := make([]dnsname.FQDN, 0, len(ipPrefixes)) for _, ipPrefix := range ipPrefixes { var generateDNSRoot func(netaddr.IPPrefix) []dnsname.FQDN switch ipPrefix.IP().BitLen() { case ipv4AddressLength: generateDNSRoot = generateIPv4DNSRootDomain case ipv6AddressLength: generateDNSRoot = generateIPv6DNSRootDomain default: panic(fmt.Sprintf("unsupported IP version with address length %d", ipPrefix.IP().BitLen())) } fqdns = append(fqdns, generateDNSRoot(ipPrefix)...) } return fqdns } func generateIPv4DNSRootDomain(ipPrefix netaddr.IPPrefix) []dnsname.FQDN { // Conversion to the std lib net.IPnet, a bit easier to operate netRange := ipPrefix.IPNet() maskBits, _ := netRange.Mask.Size() // lastOctet is the last IP byte covered by the mask lastOctet := maskBits / ByteSize // wildcardBits is the number of bits not under the mask in the lastOctet wildcardBits := ByteSize - maskBits%ByteSize // min is the value in the lastOctet byte of the IP // max is basically 2^wildcardBits - i.e., the value when all the wildcardBits are set to 1 min := uint(netRange.IP[lastOctet]) max := (min + 1<<uint(wildcardBits)) - 1 // here we generate the base domain (e.g., 100.in-addr.arpa., 16.172.in-addr.arpa., etc.) rdnsSlice := []string{} for i := lastOctet - 1; i >= 0; i-- { rdnsSlice = append(rdnsSlice, fmt.Sprintf("%d", netRange.IP[i])) } rdnsSlice = append(rdnsSlice, "in-addr.arpa.") rdnsBase := strings.Join(rdnsSlice, ".") fqdns := make([]dnsname.FQDN, 0, max-min+1) for i := min; i <= max; i++ { fqdn, err := dnsname.ToFQDN(fmt.Sprintf("%d.%s", i, rdnsBase)) if err != nil { continue } fqdns = append(fqdns, fqdn) } return fqdns } func generateIPv6DNSRootDomain(ipPrefix netaddr.IPPrefix) []dnsname.FQDN { const nibbleLen = 4 maskBits, _ := ipPrefix.IPNet().Mask.Size() expanded := ipPrefix.IP().StringExpanded() nibbleStr := strings.Map(func(r rune) rune { if r == ':' { return -1 } return r }, expanded) // TODO?: that does not look the most efficient implementation, // but the inputs are not so long as to cause problems, // and from what I can see, the generateMagicDNSRootDomains // function is called only once over the lifetime of a server process. prefixConstantParts := []string{} for i := 0; i < maskBits/nibbleLen; i++ { prefixConstantParts = append([]string{string(nibbleStr[i])}, prefixConstantParts...) } makeDomain := func(variablePrefix ...string) (dnsname.FQDN, error) { prefix := strings.Join(append(variablePrefix, prefixConstantParts...), ".") return dnsname.ToFQDN(fmt.Sprintf("%s.ip6.arpa", prefix)) } var fqdns []dnsname.FQDN if maskBits%4 == 0 { dom, _ := makeDomain() fqdns = append(fqdns, dom) } else { domCount := 1 << (maskBits % nibbleLen) fqdns = make([]dnsname.FQDN, 0, domCount) for i := 0; i < domCount; i++ { varNibble := fmt.Sprintf("%x", i) dom, err := makeDomain(varNibble) if err != nil { continue } fqdns = append(fqdns, dom) } } return fqdns } func getMapResponseDNSConfig( dnsConfigOrig *tailcfg.DNSConfig, baseDomain string, machine Machine, peers Machines, ) *tailcfg.DNSConfig { var dnsConfig *tailcfg.DNSConfig if dnsConfigOrig != nil && dnsConfigOrig.Proxied { // if MagicDNS is enabled // Only inject the Search Domain of the current namespace - shared nodes should use their full FQDN dnsConfig = dnsConfigOrig.Clone() dnsConfig.Domains = append( dnsConfig.Domains, fmt.Sprintf("%s.%s", machine.Namespace.Name, baseDomain), ) namespaceSet := set.New(set.ThreadSafe) namespaceSet.Add(machine.Namespace) for _, p := range peers { namespaceSet.Add(p.Namespace) } for _, namespace := range namespaceSet.List() { dnsRoute := fmt.Sprintf("%s.%s", namespace.(Namespace).Name, baseDomain) dnsConfig.Routes[dnsRoute] = nil } } else { dnsConfig = dnsConfigOrig } return dnsConfig }