Last commit probably

This commit is contained in:
Tyler Beckman 2024-08-27 09:23:56 -06:00
parent 4247e4fecb
commit 2470b9b1b8
Signed by: Ty
GPG key ID: 2813440C772555A4
2 changed files with 162 additions and 130 deletions

24
Makefile Normal file
View file

@ -0,0 +1,24 @@
TARGET = L1A
SRC_FILES = main.cpp
# NO EDITS BELOW THIS LINE
CXX = g++
OBJECTS = $(SRC_FILES:.cpp=.o)
ifeq ($(shell echo "Windows"), "Windows")
TARGET := $(TARGET).exe
DEL = del
else
DEL = rm -f
endif
all: $(TARGET)
$(TARGET): $(OBJECTS)
$(CXX) -std=c++17 -o $@ $^
%.o: %.cpp
$(CXX) -std=c++17 -o $@ -c $<
clean:
$(DEL) $(TARGET) $(OBJECTS)

268
main.cpp
View file

@ -1,8 +1,13 @@
/* CSCI 200: Lab XX (_INSERT_LAB_HERE_): XXXX (_GIVE_BRIEF_DESCRIPTION_HERE_) /* CSCI 200: Lab 1A (Math Equation Solver): Tyler Beckman
* *
* Author: XXXX (_INSERT_YOUR_NAME_HERE_) * Author: Tyler Beckman
* *
* More complete description here... * A C++ program to interactively solve 10 different mathmatical equations,
* using the appropriate constants where relevant. I decided to implement all 10
* rather than just 2 because it sounded interesting and I wanted to challenge
* myself. It also will keep prompting for the equation to solve until you
* explicitly respond with a 0 or CTRL+C it, rather than just exit once the
* equation is calculated.
*/ */
#include <iostream> #include <iostream>
@ -10,173 +15,176 @@
double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24; double const MOLAR_GAS_CONSTANT = 8.314'462'618'153'24;
double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8; double const GRAVITATIONAL_CONSTANT = 0.000'000'000'066'740'8;
double const SPHERE_VOLUME = 4.0 / 3; double const SPHERE_VOLUME_RATIO = 4.0 / 3;
double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8; double const VACUUM_PERMITTIVITY = 0.000'000'000'008'854'187'818'8;
double ideal_gas_law(double moles, double gas_absolute_temperature, double ideal_gas_law(double moles, double gas_absolute_temperature,
double volume) { double volume) {
return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume; return (moles * MOLAR_GAS_CONSTANT * gas_absolute_temperature) / volume;
} }
double average_acceleration(double pos_start, double pos_end, double time_start, double average_acceleration(double pos_start, double pos_end, double time_start,
double time_end) { double time_end) {
return (pos_end - pos_start) / std::pow(time_end - time_start, 2); return (pos_end - pos_start) / std::pow(time_end - time_start, 2);
} }
double ohms_law(double voltage, double resistance) { double ohms_law(double voltage, double resistance) {
return voltage / resistance; return voltage / resistance;
} }
double universal_gravitation(double mass_one, double mass_two, double universal_gravitation(double mass_one, double mass_two,
double distance) { double distance) {
return GRAVITATIONAL_CONSTANT * return GRAVITATIONAL_CONSTANT *
((mass_one * mass_two) / std::pow(distance, 2)); ((mass_one * mass_two) / std::pow(distance, 2));
} }
double pythagorean_theorem(double x, double y) { double pythagorean_theorem(double x, double y) {
return std::sqrt(std::pow(x, 2) + std::pow(y, 2)); return std::sqrt(std::pow(x, 2) + std::pow(y, 2));
} }
double sphere_volume(double radius) { double sphere_volume(double radius) {
return SPHERE_VOLUME * M_PI * std::pow(radius, 3); return SPHERE_VOLUME_RATIO * M_PI * std::pow(radius, 3);
} }
double deflection(double weight, double length, double elasticity_modulus, double deflection(double weight, double length, double elasticity_modulus,
double moment_of_inertia) { double moment_of_inertia) {
return (weight * std::pow(length, 3)) / return (weight * std::pow(length, 3)) /
(3 * elasticity_modulus * moment_of_inertia); (3 * elasticity_modulus * moment_of_inertia);
} }
double heat_transfer_rate(double transfer_coefficient, double surface_area, double heat_transfer_rate(double transfer_coefficient, double surface_area,
double temperature_change) { double temperature_change) {
return transfer_coefficient * surface_area * temperature_change; return transfer_coefficient * surface_area * temperature_change;
} }
double stress(double force, double area) { return force / area; } double stress(double force, double area) { return force / area; }
double shear_stress(double sigma_x, double sigma_y, double tau_xy, double shear_stress(double sigma_x, double sigma_y, double tau_xy,
double theta) { double theta) {
return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + return -0.5 * (sigma_x - sigma_y) * sin(2 * theta) + tau_xy * cos(2 * theta);
tau_xy * cos(2 * theta);
} }
double coulombs_law(double charge_1, double charge_2, double coulombs_law(double charge_1, double charge_2,
double relative_static_permittivity, double distance) { double relative_static_permittivity, double distance) {
return std::fabs(charge_1 * charge_2) / return std::fabs(charge_1 * charge_2) /
(4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity * (4 * M_PI * VACUUM_PERMITTIVITY * relative_static_permittivity *
std::pow(distance, 2)); std::pow(distance, 2));
} }
double input_double(std::string prompt) { double input_double(std::string prompt) {
double out; double out;
while (true) { while (true) {
std::cout << prompt + ": "; std::cout << prompt + ": ";
std::cin >> out; std::cin >> out;
if (std::cin.fail()) { if (std::cin.fail()) {
std::cin.clear(); // The clear and ignore are necessary because otherwise it seems to keep
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n'); // reusing the first input a person enters
std::cout << "Invalid number, Please try again" << std::endl; std::cin.clear();
} else { std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
break; std::cout << "Invalid number, please make sure your number is formatted "
} "correctly."
} << std::endl;
} else {
break;
}
}
return out; return out;
} }
int main() { int main() {
while (true) { while (true) {
std::cout << "[0] Quit program" << std::endl std::cout << "[0] Quit program" << std::endl
<< "[1] Ideal gas law" << std::endl << "[1] Ideal gas law" << std::endl
<< "[2] Average acceleration" << std::endl << "[2] Average acceleration" << std::endl
<< "[3] Ohm's law" << std::endl << "[3] Ohm's law" << std::endl
<< "[4] Universal gravitation" << std::endl << "[4] Universal gravitation" << std::endl
<< "[5] Pythagorean theorem" << std::endl << "[5] Pythagorean theorem" << std::endl
<< "[6] Sphere volume" << std::endl << "[6] Sphere volume" << std::endl
<< "[7] Deflection" << std::endl << "[7] Deflection" << std::endl
<< "[8] Heat transfer rate" << std::endl << "[8] Heat transfer rate" << std::endl
<< "[9] Stress" << std::endl << "[9] Stress" << std::endl
<< "[10] Shear Stress" << std::endl << "[10] Shear Stress" << std::endl
<< "[11] Coulomb's law" << std::endl; << "[11] Coulomb's law" << std::endl;
int equation = int equation_choice =
input_double("Which equation would you like to calculate?"); input_double("Which equation would you like to calculate?");
double output; double calculated_value;
switch (equation) { switch (equation_choice) {
case 0: case 0:
return 0; return 0;
case 1: case 1:
output = ideal_gas_law( calculated_value = ideal_gas_law(
input_double("Please enter amount of moles"), input_double("Please enter amount of moles"),
input_double("Please enter the gas absolute temperate"), input_double("Please enter the gas absolute temperate"),
input_double("Please enter the volume")); input_double("Please enter the volume"));
break; break;
case 2: case 2:
output = average_acceleration( calculated_value = average_acceleration(
input_double("Please enter the starting position"), input_double("Please enter the starting position"),
input_double("Please enter the ending position"), input_double("Please enter the ending position"),
input_double("Please enter the starting time"), input_double("Please enter the starting time"),
input_double("Please enter the ending time")); input_double("Please enter the ending time"));
break; break;
case 3: case 3:
output = ohms_law(input_double("Please input the voltage"), calculated_value =
input_double("Please input the resistance")); ohms_law(input_double("Please input the voltage"),
break; input_double("Please input the resistance"));
case 4: break;
output = universal_gravitation( case 4:
input_double("Please input the mass of object 1"), calculated_value = universal_gravitation(
input_double("Please input the mass of object 2"), input_double("Please input the mass of object 1"),
input_double("Please input the distance between objects")); input_double("Please input the mass of object 2"),
break; input_double("Please input the distance between objects"));
case 5: break;
output = pythagorean_theorem( case 5:
input_double("Please input the x distance"), calculated_value =
input_double("Please input the y distance")); pythagorean_theorem(input_double("Please input the x distance"),
break; input_double("Please input the y distance"));
case 6: break;
output = sphere_volume( case 6:
input_double("Please input the sphere radius")); calculated_value =
break; sphere_volume(input_double("Please input the sphere radius"));
case 7: break;
output = deflection( case 7:
input_double("Please input the force of weight"), calculated_value =
input_double("Please input the length"), deflection(input_double("Please input the force of weight"),
input_double("Please input the elasticity modulus"), input_double("Please input the length"),
input_double("Please input the moment of inertia")); input_double("Please input the elasticity modulus"),
break; input_double("Please input the moment of inertia"));
case 8: break;
output = heat_transfer_rate( case 8:
input_double("Please input the transfer coefficient"), calculated_value = heat_transfer_rate(
input_double("Please input the surface area"), input_double("Please input the transfer coefficient"),
input_double("Please input the change in temperature")); input_double("Please input the surface area"),
break; input_double("Please input the change in temperature"));
case 9: break;
output = case 9:
stress(input_double("Please input the amount of force"), calculated_value =
input_double("Please input the surface area")); stress(input_double("Please input the amount of force"),
break; input_double("Please input the surface area"));
case 10: break;
output = shear_stress(input_double("Please enter σ_x"), case 10:
input_double("Please enter σ_y"), calculated_value = shear_stress(
input_double("Please enter τ_xy"), input_double("Please enter σ_x"), input_double("Please enter σ_y"),
input_double("Please enter θ (in radians)")); input_double("Please enter τ_xy"),
break; input_double("Please enter θ (in radians)"));
case 11: break;
output = coulombs_law( case 11:
input_double("Please input the first charge"), calculated_value = coulombs_law(
input_double("Please input the second charge"), input_double("Please input the first charge"),
input_double( input_double("Please input the second charge"),
"Please input the relative static permittivity"), input_double("Please input the relative static permittivity"),
input_double("Please input the distance between charges")); input_double("Please input the distance between charges"));
break; break;
default: default:
std::cout << "That is not a valid choice. Please try again." std::cout << "That is not a valid equation choice. Please try again."
<< std::endl; << std::endl;
continue; continue;
} }
std::cout << "The result of that calculation is: " << output std::cout << "The result of that calculation is: " << calculated_value
<< std::endl; << std::endl;
} }
} }